Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
J Mol Graph Model ; 119: 108390, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36502606

RESUMO

Cytochrome P4501B1 (CYP1B1) is reported to be overexpressed in various malignancies including ovarian, lung, lymph, and breast cancers. The overexpression of this enzyme is accountable for the biotransformation-based inactivation of some anti-cancer drugs i.e. Docetaxel, Paclitaxel, and Cisplatin. To circumvent solutions to this issue, the current study reports some optimized derivatives of benzochalcone as selective CYP1B1 inhibitors. The optimized derivatives were screened using some structure-based drug-designing approaches including molecular docking and molecular dynamics. The implemented approaches revealed that all the designed molecules demonstrated not only essential interactions with key amino acid residues but also maintained stability within the active site of CYP1B1. Furthermore, to validate the in-silico results and develop a SAR, the designed molecules were subsequently synthesized and tested for their ability to selectively inhibit CYP1B1 over CYP1A1 using well established EROD assay. This assay results suggested that compounds 1(c), 1(d), and 1(e) are eightfold more selective CYP1B1 inhibitors over CYP1A1 with IC50 values ranging from 0.06 to 0.09 µM respectively. Among these, compound 1(d) manifested potent inhibitory activity i.e. IC50 of 0.06 µM with 24 folds selectivity over 1A1. To have a better insight into the binding pattern of 1(d) within CYP1B1 and precisely compute binding affinity for 1(d)-CYP1B1 complex, one of the advanced QM/MM approaches i.e. ONIOM has been implemented. Where 1(d)-CYP1B1 complex conferred comparable binding affinity in terms of ΔG (kcal/mol) with that of ANF-CYP1B1 complex. This research could provide a suitable starting point for the development of more potent multi-functional compounds with CYP1B1 inhibitory activity.


Assuntos
Antineoplásicos , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP1B1/metabolismo , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A1/metabolismo , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Cisplatino/farmacologia
2.
Curr Pharm Des ; 28(45): 3637-3648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411579

RESUMO

AIM: The cytochrome P450 enzymes play a significant role in regulating cellular and physiological processes by activating endogenous compounds. They also play an essential role in the detoxification process of xenobiotics. Flavonoids belong to a class of polyphenols found in food, such as vegetables, red wine, beer, and fruits, which modulate biological functions in the body. METHODS: The inhibition of CYP1A1 and CYP1B1 using nutritional sources has been reported as a strategy for cancer prevention. This study investigated the interactions of selected flavonoids binding to the cytochrome P450 enzymes (CYP1A1 and CYP1B1) and their ADMET properties in silico. From docking studies, our findings showed flavonoids, isorhamnetin and pedalitin, to have the strongest binding energies in the crystal structures 6DWM and 6IQ5. RESULTS: The amino acid residues Asp 313 and Phe 224 in 6DWM interacted with all the ligands investigated, and Ala 330 in 6IQ5 interacted with all the ligands examined. The ligands did not violate any drug-likeness parameters. CONCLUSION: These data suggest roles for isorhamnetin and pedalitin as potential precursors for natural product- derived therapies.


Assuntos
Citocromo P-450 CYP1A1 , Flavonoides , Humanos , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A1/metabolismo , Flavonoides/química , Ligantes , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP1B1 , Polifenóis
3.
J Cell Biochem ; 123(9): 1422-1439, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35765708

RESUMO

Carcinogens present in smokeless tobacco (SLT) like tobacco-specific nitrosamines can be metabolized by the cytochrome P450 (CYP450) enzyme. Functionally, the CYP450 enzyme resides in a heme pigment to perform the catalytic activity. The CYP1A1 is one of the main extrahepatic CYP450 enzymes known to detoxify toxic substances and activate carcinogens. The CYP1A1 inhibition by potential inhibitors reduce the chance of oral cancer. The current study aimed to explore more about the inhibitor binding site and identification of lead alkaloids, that could work as putative inhibitors against target CYP1A1. In respect, we have performed docking studies, virtual screening of alkaloids, and natural product libraries against CYP1A1 followed by molecular dynamic simulations and binding free energy calculations. Docking studies of tobacco-specific nitrosamine (TSNA) products and their similar carcinogen analogs revealed that the heme group is bound to the floor of the bowl-shaped cavity whereas carcinogens are bound to the roof of the rounded shape cavity. Furthermore, virtual screening and binding free energy calculations revealed Tomatidine as a putative inhibitor against CYP1A1. On the basis of altogether outcomes of the current study, we have concluded that the addition of lead-hit alkaloid Tomatidine and others in SLT products may be working as a supplement that could be able to reduce the expression of human CYP1A1 and suppresses carcinogenic by-products formations.


Assuntos
Alcaloides , Produtos Biológicos , Nitrosaminas , Alcaloides/farmacologia , Carcinógenos , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Heme , Humanos , Simulação de Dinâmica Molecular
4.
ChemistryOpen ; 11(5): e202200016, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35610057

RESUMO

Dibenzyl trisulfide (DTS) is a natural compound with potential cancer-preventive properties occurring in Petiveria alliacea L., an ethnomedicinal plant native to the Americas. Previous studies revealed its inhibitory activity toward cytochrome P450 (CYP)1 enzymes, key in the activation of environmental pollutants. Accordingly, the aim of this study was to design novel DTS analogues, aimed at improving not only inhibitory activity, but also specificity toward CYP1A1. This was achieved by targeting interactions with CYP1A1 residues of identified importance. Three-dimensional structures for the novel analogues were subjected to molecular docking with several CYP isoforms, before being ranked in terms of binding affinity to CYP1A1. With three hydrogen bond donors, two hydrogen bond acceptors, a molecular mass of 361 Da, and a log P of 3.72, the most promising DTS analogue obeys Lipinski's rule of five. Following synthesis and in vitro validation of its CYP1A1-inhibitory properties, this compound may be useful in future cancer-preventive approaches.


Assuntos
Citocromo P-450 CYP1A1 , Neoplasias , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A1/metabolismo , Humanos , Simulação de Acoplamento Molecular , Sulfetos
5.
Eur J Med Chem ; 229: 114003, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34839998

RESUMO

We recently discovered a new family of prodrugs deriving from phenyl 4-(2-oxo-3-imidazolidin-1-yl)benzenesulfonates (PIB-SOs) bioactivatable by cytochrome P450 1A1 (CYP1A1) into potent antimitotics referred to as phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs). PAIB-SOs display significant selectivity toward human breast cancer cells based on the N-dealkylation of PAIB-SOs into their corresponding PIB-SOs by CYP1A1. In this study, we have evaluated the molecular mechanism of the bioactivation of PAIB-SOs into PIB-SOs by branching the linear alkyl chain on the imidazolidin-2-one (IMZ) moiety of PAIB-SOs by branched alkyl groups such as isopropyl, isobutyl and sec-butyl. Our results show that PAIB-SOs bearing an isobutyl group on the IMZ moiety and either a methoxy, a chloro or a bromo group at positions 3, 3,5 or 3,4,5 on the aromatic ring B exhibit antiproliferative activity ranging from 0.13 to 6.9 µM and selectivity toward MCF7 and MDA-MB-468 mammary cancer cells comparatively to other cell lines tested. Moreover, the most potent and selective PAIB-SOs bearing an isobutyl group and either a 3,5-Cl (44), 3,5-Br (45) or a 3,4,5-OMe (46) on the IMZ moiety exhibit antiproliferative activity in the sub-micromolar range and high selectivity ratios toward mammary cancer cells. They stop the cell cycle of MCF7 cells in the G2/M phase and disrupt their cytoskeleton. Furthermore, our studies evidenced that PAIB-SOs bearing either an isopropyl, a sec-butyl or an isobutyl group are hydroxylated on the carbon atom adjacent to the IMZ (Cα-OH) but only PAIB-SOs bearing an isobutyl group are bioactivated into PIB-SOs. Finally, PAIB-SOs 45 and 46 exhibit low toxicity toward normal cells and chick embryos and are thus promising antimitotic prodrugs highly selective toward CYP1A1-expressing breast cancer cells.


Assuntos
Antimitóticos/química , Benzenossulfonatos/química , Citocromo P-450 CYP1A1/metabolismo , Pró-Fármacos/química , Animais , Antimitóticos/síntese química , Antimitóticos/farmacologia , Benzenossulfonatos/síntese química , Benzenossulfonatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Galinhas , Citocromo P-450 CYP1A1/química , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Meia-Vida , Humanos , Microssomos Hepáticos/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Relação Estrutura-Atividade , Especificidade por Substrato
6.
J Biomol Struct Dyn ; 40(17): 7975-7990, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33769194

RESUMO

Cytochrome P4501B1 is a ubiquitous family protein that is majorly overexpressed in tumors and is responsible for biotransformation-based inactivation of anti-cancer drugs. This inactivation marks the cause of resistance to chemotherapeutics. In the present study, integrated in-silico approaches were utilized to identify selective CYP1B1 inhibitors. To achieve this objective, we initially developed different machine learning models corresponding to two isoforms of the CYP1 family i.e. CYP1A1 and CYP1B1. Subsequently, small molecule databases including ChemBridge, Maybridge, and natural compound library were screened from the selected models of CYP1B1 and CYP1A1. The obtained CYP1B1 inhibitors were further subjected to molecular docking and ADMET analysis. The selectivity of the obtained hits for CYP1B1 over the other isoforms was also judged with molecular docking analysis. Finally, two hits were found to be the most stable which retained key interactions within the active site of CYP1B1 after the molecular dynamics simulations. Novel compound with CYP-D9 and CYP-14 IDs were found to be the most selective CYP1B1 inhibitors which may address the issue of resistance. Moreover, these compounds can be considered as safe agents for further cell-based and animal model studies. Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Citocromo P-450 CYP1A1 , Antineoplásicos/química , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1B1/química , Citocromo P-450 CYP1B1/metabolismo , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Isoformas de Proteínas/metabolismo
7.
Phys Chem Chem Phys ; 23(36): 20230-20246, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34474468

RESUMO

Research on action selectivity between CYP1A1 and CYP1B1 is particularly valuable for cancer chemoprevention and chemotherapy. However, they share a very close similarity in their ligand-binding pockets that α-naphthoflavone (ANF) is the co-crystal ligand for both isoforms, which poses a major challenge in revealing their selectivity mechanism. Therefore, three selective CYP1B1 inhibitors derived from ANF were selected to illustrate the structural basis for the selectivity between the two isoforms via a comprehensive computational strategy. It was found that the sustainability of the π-π stacking interactions with the phenylalanine residues of the two isoforms, namely, Phe123, Phe224, and Phe258 for CYP1A1, and Phe134, Phe231, and Phe268 for CYP1B1, played a crucial role in determining the selectivity of ligands with a classic aromatic conjugation system like ANF and its derivatives for CYP1B1 versus CYP1A1. Of note, the structural flexibility of the corresponding protein domains mainly orchestrated the sustainability of the corresponding π-π stacking interactions, thereby determining the binding selectivity. Therefore, the structure modification of naphthoflavone lead compounds into preferable binding configurations to satisfy the π-π stacking interactions of the key phenylalanine residues within CYP1B1 would be an inspiring strategy devised to improve the inhibitory selectivity towards CYP1B1. Collectively, this study revealed valuable insight into understanding the selective mechanism between CYP1A1 and CYP1B1 from the perspective of structural flexibility, which sheds light on the future rational design of CYP1B1 selective inhibitors.


Assuntos
Benzoflavonas/farmacologia , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1B1/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Benzoflavonas/química , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/química , Citocromo P-450 CYP1B1/metabolismo , Inibidores Enzimáticos/química , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular
8.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299011

RESUMO

Osteoporosis is the most common metabolic bone disorder and nitrogen-containing bisphosphonates (BP) are a first line treatment for it. Yet, atypical femoral fractures (AFF), a rare adverse effect, may appear after prolonged BP administration. Given the low incidence of AFF, an underlying genetic cause that increases the susceptibility to these fractures is suspected. Previous studies uncovered rare CYP1A1 mutations in osteoporosis patients who suffered AFF after long-term BP treatment. CYP1A1 is involved in drug metabolism and steroid catabolism, making it an interesting candidate. However, a functional validation for the AFF-associated CYP1A1 mutations was lacking. Here we tested the enzymatic activity of four such CYP1A1 variants, by transfecting them into Saos-2 cells. We also tested the effect of commonly used BPs on the enzymatic activity of the CYP1A1 forms. We demonstrated that the p.Arg98Trp and p.Arg136His CYP1A1 variants have a significant negative effect on enzymatic activity. Moreover, all the BP treatments decreased CYP1A1 activity, although no specific interaction with CYP1A1 variants was found. Our results provide functional support to the hypothesis that an additive effect between CYP1A1 heterozygous mutations p.Arg98Trp and p.Arg136His, other rare mutations and long-term BP exposure might generate susceptibility to AFF.


Assuntos
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fraturas do Fêmur/genética , Fraturas do Fêmur/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citocromo P-450 CYP1A1/química , Difosfonatos/uso terapêutico , Fraturas do Fêmur/enzimologia , Humanos , Incidência , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Filogenia , Alinhamento de Sequência
9.
Biochem J ; 478(2): 377-388, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33394027

RESUMO

P450 and heme oxygenase-1 (HO-1) receive their necessary electrons by interaction with the NADPH-cytochrome P450 reductase (POR). As the POR concentration is limiting when compared with P450 and HO-1, they must effectively compete for POR to function. In addition to these functionally required protein-protein interactions, HO-1 forms homomeric complexes, and several P450s have been shown to form complexes with themselves and with other P450s, raising the question, 'How are the HO-1 and P450 systems organized in the endoplasmic reticulum?' Recently, CYP1A2 was shown to associate with HO-1 affecting the function of both proteins. The goal of this study was to determine if CYP1A1 formed complexes with HO-1 in a similar manner. Complex formation among POR, HO-1, and CYP1A1 was measured using bioluminescence resonance energy transfer, with results showing HO-1 and CYP1A1 form a stable complex that was further stabilized in the presence of POR. The POR•CYP1A1 complex was readily disrupted by the addition of HO-1. CYP1A1 also was able to affect the POR•HO-1 complex, although the effect was smaller. This interaction between CYP1A1 and HO-1 also affected function, where the presence of CYP1A1 inhibited HO-1-mediated bilirubin formation by increasing the KmPOR•HO-1 without affecting the Vmaxapp. In like manner, HO-1 inhibited CYP1A1-mediated 7-ethoxyresorufin dealkylation by increasing the KmPOR•CYP1A1. Based on the mathematical simulation, the results could not be explained by a model where CYP1A1 and HO-1 simply compete for POR, and are consistent with the formation of a stable CYP1A1•HO-1 complex that affected the functional characteristics of both moieties.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Heme Oxigenase-1/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Citocromo P-450 CYP1A1/química , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Heme Oxigenase-1/química , Humanos , Domínios e Motivos de Interação entre Proteínas
10.
Biochem Genet ; 58(4): 551-565, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504241

RESUMO

Cytochrome P4501A (CYP1A) has been used as a specific biomarker for monitoring water contamination such as PAHs, PCBs and dioxins. In the present study, the cyp1a gene of Gambusia affinis was cloned and sequenced and their expressions under PAHs exposure were characterized. The newly identified cyp1a encodes a protein with 521 amino acids that shared 96-80% identity with other Cyprinodontiformes fishes. RT-PCR analysis revealed that the basal mRNA level of cyp1a was highly expressed in liver and intestine. The expression level of cyp1a was significantly induced by exposure to 100 µg/L 3, 4-Benzopyrene (BaP) for 5 days in the muscle, testis, brain, liver and intestine of adult male fish. Except in the testis, the induced mRNA level of cyp1a ultimately decreased after prolonging the exposure time to 25 days. As for testis, the induced mRNA level of cyp1a was maintained at a high level during the entire exposure time under 100 µg/L BaP exposure. Furthermore, the expression of cyp1a increased with exposure time under a relatively low exposure concentrations 1 µg/L. Regarding the effects of other PAHs, D(a,h)A, BbF, and BaA showed a statistically significant effect of induction on mRNA level of cyp1a in the muscle, testis, brain, liver and intestine.


Assuntos
Ciprinodontiformes/genética , Citocromo P-450 CYP1A1/genética , Expressão Gênica/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , RNA Mensageiro/genética , Poluentes Químicos da Água/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Benzo(a)pireno/farmacologia , Ciprinodontiformes/metabolismo , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A1/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Masculino , Filogenia , RNA Mensageiro/química , Testículo/metabolismo , Fatores de Tempo
11.
FASEB J ; 34(7): 9141-9155, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32421247

RESUMO

Human-induced pluripotent stem cells (hiPSCs) are invaluable sources for drug screening and toxicity tests because of their differentiation potential and proliferative capacity. Recently, the CRISPR-Cas9-mediated homologous recombination system has enabled reporter knock-ins at desired loci in hiPSCs, and here, we generated a hiPSC reporter line expressing mCherry-tagged cytochrome P450 1A1 (CYP1A1), which can be utilized to screen for the modulators of aryl hydrocarbon receptor (AHR) in live cells. CYP1A1-mCherry hiPSCs exhibited typical characteristics of pluripotent stem cells such as marker expression, differentiation potential, and normal karyotype. After differentiation into hepatocyte-like cells (HLCs), CYP1A1-mCherry fusion protein was expressed and localized at the endoplasmic reticulum, and induced by AHR agonists. We obtained 23 hits modulating CYP1A1 expression from high-content screening with 241 hepatotoxicity chemicals and nuclear receptor ligands, and identified three upregulating chemicals and two downregulating compounds. Responses of hiPSC-HLCs against an AHR agonist were more similar to human primary hepatocytes than of HepG2 hepatocellular carcinoma cells. This platform has the advantages of live-cell screening without sacrificing cells (unlike previously available CYP1A1 reporter cell lines), as well as an indefinite supply of cells, and can be utilized in a wide range of screening related to AHR- and CYP1A1-associated diseases in desired cell types.


Assuntos
Citocromo P-450 CYP1A1/química , Fluorescência , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Preparações Farmacêuticas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Diferenciação Celular , Citocromo P-450 CYP1A1/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/enzimologia , Transdução de Sinais
12.
Drug Metab Pharmacokinet ; 35(1): 165-185, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31974042

RESUMO

A simulation system for ligand interaction of human CYP1A1 has been developed using "Template" composed of hexagonal grids, as a modification of CYP1A2 system established previously. Differing from CYP1A2 Template, Site of Oxidation of CYP1A1 was located one-grid (Ring) away horizontally from Trigger-Region (Ring B) on CYP1A1 Template. Simultaneous interaction at Site of Oxidation and Trigger-Region as uni- or bi-molecule binding was maintained with CYP1A1 as well as CYP1A2 for the functional contributions. Reciprocal comparison of simulation results with experimental data suggested the access of ligands to Site of Oxidation inside of CYP1A1, through three distinct routes, termed Sideway, Center-Area and Thick-Area. To facilitate the verification of feasible placement(s), typical modes of the regional interactions have been defined and developed for prognostic devices. Simulation experiments of human and rat CYP1A1 offered possible causative mechanisms of the species difference as their distinct interactions near Site of Oxidation. The present CYP1A1 Template system has been proven to afford regio- and stereo-chemically feasible placements, through the use of the prognostic devices, of total of 353 CYP1A1-mediated reactions of 223 of distinct ligands, including substrates, inhibitors and poor substrates of drugs, environmental chemicals and endobiotics.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Inibidores das Enzimas do Citocromo P-450/metabolismo , Animais , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/química , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Humanos , Ligantes , Estrutura Molecular , Ratos
13.
J Steroid Biochem Mol Biol ; 196: 105507, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669572

RESUMO

Aromatase (CYP19A1) converts androgens into estrogens and is required for female sexual development and growth and development in both sexes. CYP19A1 is a member of cytochrome P450 family of heme-thiolate monooxygenases located in the endoplasmic reticulum and depends on reducing equivalents from the reduced nicotinamide adenine dinucleotide phosphate via the cytochrome P450 oxidoreductase coded by POR. Both the CYP19A1 and POR genes are highly polymorphic, and mutations in both these genes are linked to disorders of steroid biosynthesis. We have previously shown that R264C and R264H mutations in CYP19A1, as well as mutations in POR, reduce CYP19A1 activity. The R264C is a common polymorphic variant of CYP19A1, with high frequency in Asian and African populations. Polymorphic alleles of POR are found in all populations studied so far and, therefore, may influence activities of CYP19A1 allelic variants. So far, the effects of variations in POR on enzymatic activities of allelic variants of CYP19A1 or any other steroid metabolizing cytochrome P450 proteins have not been studied. Here we are reporting the effects of three POR variants on the aromatase activities of two CYP19A1 variants, R264C, and R264H. We used bacterially expressed and purified preparations of WT and variant forms of CYP19A1 and POR and constructed liposomes with embedded CYP19A1 and POR proteins and assayed the CYP19A1 activities using radiolabeled androstenedione as a substrate. With the WT-POR as a redox partner, the R264C-CYP19A1 showed only 15% of aromatase activity, but the R264H had 87% of aromatase activity compared to WT-CYP19A1. With P284L-POR as a redox partner, R264C-CYP19A1 lost all activity but retained 6.7% of activity when P284T-POR was used as a redox partner. The R264H-CYP19A1 showed low activities with both the POR-P284 L as well as the POR-P284 T. When the POR-Y607C was used as a redox partner, the R264C-CYP19A1 retained approximately 5% of CYP19A1 activity. Remarkably, The R264H-CYP19A1 had more than three-fold higher activity compared to WT-CYP19A1 when the POR-Y607C was used as the redox partner, pointing toward a beneficial effect. The slight increase in activity of R264C-CYP19A1 with the P284T-POR and the three-fold increase in activity of the R264H-CYP19A1 with the Y607C-POR point toward a conformational effect and role of protein-protein interaction governed by the R264C and R264H substitutions in the CYP19A1 as well as P284 L, P284 T and Y607C variants of POR. These studies demonstrate that the allelic variants of P450 when present with a variant form of POR may show different activities, and combined effects of variations in the P450 enzymes as well as in the POR should be considered when genetic data are available. Recent trends in the whole-exome and whole-genome sequencing as diagnostic tools will permit combined evaluation of variations in multiple genes that are interdependent and may guide treatment options by adjusting therapeutic interventions based on laboratory analysis.


Assuntos
Hiperplasia Suprarrenal Congênita/genética , Aromatase/genética , Aromatase/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hiperplasia Suprarrenal Congênita/enzimologia , Hiperplasia Suprarrenal Congênita/metabolismo , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/fisiologia , Androstenodiona/metabolismo , Arginina/genética , Aromatase/química , Aromatase/deficiência , Cisteína/genética , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A1/deficiência , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ativação Enzimática/genética , Histidina/genética , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto/fisiologia , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Relação Estrutura-Atividade
14.
Molecules ; 24(15)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366067

RESUMO

NCMN (N-(3-carboxy propyl)-4-methoxy-1,8-naphthalimide), a newly developed ratiometric two-photon fluorescent probe for human Cytochrome P450 1A (CYP1A), shows the best combination of specificity and reactivity for real-time detection of the enzymatic activities of CYP1A in complex biological systems. This study aimed to investigate the interspecies variation in NCMN-O-demethylation in commercially available liver microsomes from human, mouse, rat, beagle dog, minipig and cynomolgus monkey. Metabolite profiling demonstrated that NCMN could be O-demethylated in liver microsomes from all species but the reaction rate varied considerably. CYP1A was the major isoform involved in NCMN-O-demethylation in all examined liver microsomes based on the chemical inhibition assays. Furafylline, a specific inhibitor of mammalian CYP1A, displayed differential inhibitory effects on NCMN-O-demethylation in all tested species. Kinetic analyses demonstrated that NCMN-O-demethylation in liver microsomes form rat, minipig and cynomolgus monkey followed biphasic kinetics, while in liver microsomes form human, mouse and beagle dog obeyed Michaelis-Menten kinetics, the kinetic parameters from various species are much varied, while NCMN-O-demethylation in MLM exhibited the highest similarity of specificity, kinetic behavior and intrinsic clearance as that in HLM. These findings will be very helpful for the rational use of NCMN as a practical tool to decipher the functions of mammalian CYP1A or to study CYP1A associated drug-drug interactions in vivo.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Desmetilação/efeitos dos fármacos , Corantes Fluorescentes/metabolismo , Isoquinolinas/metabolismo , Microssomos Hepáticos/enzimologia , Animais , Biotransformação/efeitos dos fármacos , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Cães , Corantes Fluorescentes/química , Humanos , Isoquinolinas/química , Cinética , Macaca fascicularis , Camundongos , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Suínos , Porco Miniatura , Teofilina/análogos & derivados , Teofilina/farmacologia
15.
Eur J Pharm Sci ; 131: 177-194, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776468

RESUMO

Microsomal cytochrome P450 (CYP) enzymes, isolated from recombinant bacterial/insect/yeast cells, are extensively used for drug metabolism studies. However, they may not always portray how a developmental drug would behave in human cells with intact intracellular transport mechanisms. This study emphasizes the usefulness of human HEK293 kidney cells, grown in 'suspension' for expression of CYPs, in finding potent CYP1A1/CYP1B1 inhibitors, as possible anticancer agents. With live cell-based assays, quinazolinones 9i/9b were found to be selective CYP1A1/CYP1B1 inhibitors with IC50 values of 30/21 nM, and > 150-fold selectivity over CYP2/3 enzymes, whereas they were far less active using commercially-available CYP1A1/CYP1B1 microsomal enzymes (IC50, >10/1.3-1.7 µM). Compound 9i prevented CYP1A1-mediated benzo[a]pyrene-toxicity in normal fibroblasts whereas 9b completely reversed cisplatin resistance in PC-3/prostate, COR-L23/lung, MIAPaCa-2/pancreatic and LS174T/colon cancer cells, underlining the human-cell-assays' potential. Our results indicate that the most potent CYP1A1/CYP1B1 inhibitors would not have been identified if one had relied merely on microsomal enzymes.


Assuntos
Citocromo P-450 CYP1A1 , Citocromo P-450 CYP1B1 , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Quinazolinonas , Antineoplásicos/farmacologia , Benzo(a)pireno/toxicidade , Bioensaio , Linhagem Celular , Cisplatino/farmacologia , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/antagonistas & inibidores , Citocromo P-450 CYP1B1/química , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Microssomos Hepáticos/enzimologia , Modelos Moleculares , Quinazolinonas/química , Quinazolinonas/farmacologia
16.
Bioorg Med Chem ; 27(2): 285-304, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553624

RESUMO

Selective cytochrome P450 (CYP) 1B1 inhibition has potential as an anticancer strategy that is unrepresented in the current clinical arena. For development of a selective inhibitor, we focused on the complexity caused by sp3-hybridized carbons and synthesized a series of benzo[h]chromone derivatives linked to a non-aromatic B-ring using α-naphthoflavone (ANF) as the lead compound. Ring structure comparison suggested compound 37 as a suitable cyclohexyl-core with improved solubility. Structural evolution of 37 produced the azide-containing cis-49a, which had good properties in three important respects: (1) selectivity for CYP1B1 over CYP1A1 and CYP1A2 (120-times and 150-times, respectively), (2) greater inhibitory potency of >2 times that of ANF, and (3) improved solubility. The corresponding aromatic B-ring compound 59a showed low selectivity and poor solubility. To elucidate the binding mode, we performed X-ray crystal structure analysis, which revealed the interaction mode and explained the subtype selectivity of cis-49a.


Assuntos
Benzoflavonas/química , Inibidores do Citocromo P-450 CYP1A2/química , Citocromo P-450 CYP1B1/antagonistas & inibidores , Benzoflavonas/síntese química , Domínio Catalítico , Cristalografia por Raios X , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A2/química , Inibidores do Citocromo P-450 CYP1A2/síntese química , Citocromo P-450 CYP1B1/química , Desenho de Fármacos , Escherichia coli/genética , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Solubilidade , Relação Estrutura-Atividade
17.
J Biomol Struct Dyn ; 37(16): 4161-4170, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30431391

RESUMO

According to the X-ray crystal structures of CYP17A1 (including its complexes with inhibitors), it is shown that a hydrogen bond exists between CYP17A1 and its inhibitors (such as abiraterone and TOK-001). Previous short MD simulations (50 ns) suggested that the binding of abiraterone to CYP17A1 is stronger than that of TOK-001. In this work, by carrying out long atomistic MD simulations (200 ns) of CYP17A1 and its complexes with abiraterone and TOK-001, we observed a binding mode between CYP17A1 and abiraterone, which is different from the binding mode between CYP17A1 and TOK-001. In the case of abiraterone binding, the unfilled volume in the active site cavity increases the freedom of movement of abiraterone within CYP17A1, leading to the collective motions of the helices G and B' as well as the breaking of hydrogen bond existing between the 3ß-OH group of abiraterone and N202 of CYP17A1. However, the unfilled volume in the active site cavity can be occupied by the benzimidazole ring of TOK-001, restraining the motion of TOK-001. By pulling the two inhibitors (abiraterone and TOK-001) out of the binding pocket in CYP17A1, we discovered that abiraterone and TOK-001 were moved from their binding sites to the surface of protein similarly through the channels formed by the helices G and B'. In addition, based on the free energy calculations, one can see that it is energetically favorable for the two inhibitors (abiraterone and TOK-001) to enter into the binding pocket in CYP17A1.


Assuntos
Androstadienos/química , Androstenos/química , Antineoplásicos/química , Benzimidazóis/química , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/química , Neoplasias da Próstata/tratamento farmacológico , Androstadienos/farmacologia , Androstenos/farmacologia , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Sítios de Ligação , Domínio Catalítico , Heme/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ferro/química , Masculino , Simulação de Acoplamento Molecular , Conformação Proteica em alfa-Hélice
18.
J Biol Chem ; 293(50): 19211-19212, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552114

RESUMO

The cytochromes P450 (CYPs) oxidatively transform a huge number of substrates in both prokaryotic and eukaryotic organisms, but the mechanisms by which they accommodate these diverse molecules remain unclear. A new study by Bart and Scott reports two co-crystal structures of CYP1A1 that reveal structural rearrangements and flexible interaction networks that explain how the active site cavity shapes itself around new ligands. These data open the door to an increased understanding of fundamental enzyme behavior and improved searches for anti-cancer compounds.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Inibidores Enzimáticos/metabolismo , Cloridrato de Erlotinib/metabolismo , Furocumarinas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Citocromo P-450 CYP1A1/química , Inibidores Enzimáticos/química , Cloridrato de Erlotinib/química , Furocumarinas/química , Humanos , Ligantes , Ligação Proteica , Especificidade por Substrato
19.
J Biol Chem ; 293(50): 19201-19210, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30254074

RESUMO

Human cytochrome P450 1A1 (CYP1A1) is an extrahepatic enzyme involved in the monooxygenation of structurally diverse compounds ranging from natural products to drugs and protoxins. Because CYP1A1 has a role in human carcinogenesis, inhibiting its activity may potentially aid in cancer chemoprevention, whereas utilizing CYP1A1's oxidative activity could help selectively activate anticancer prodrugs. Such potential therapeutic purposes require detailed knowledge of CYP1A1's interactions with potential ligands. Known CYP1A1 ligands also vary substantially in size, and it has not been apparent from a single existing CYP1A1 structure how larger, structurally diverse ligands are accommodated within the enclosed active site. Here, two new X-ray structures with the natural product furanocoumarin bergamottin (at 2.85 Å resolution) and the lung cancer drug erlotinib (3.0 Å) revealed binding orientations consistent with the formation of innocuous metabolites and of toxic metabolites, respectively. They also disclosed local changes in the roof of the active site that enlarge the active site and ultimately form a channel to the protein exterior. Although further structural modifications would be required to accommodate the largest CYP1A1 ligands, knowing which components of the active site are malleable provides powerful information for those attempting to use computational approaches to predict compound binding and substrate metabolism by this clinically relevant monooxygenase.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Inibidores Enzimáticos/metabolismo , Cloridrato de Erlotinib/metabolismo , Furocumarinas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/química , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Cloridrato de Erlotinib/química , Furocumarinas/química , Humanos , Ligantes , Ligação Proteica , Especificidade por Substrato
20.
Artigo em Inglês | MEDLINE | ID: mdl-30012402

RESUMO

Fish can be simultaneously or sequentially exposed to various kinds of pollutants, resulting in combined effects. Polycyclic aromatic hydrocarbons induce cytochrome P450 monooxygenase 1A (CYP1A) expression, which catalyzes the conversion of the organophosphorus insecticide chlorpyrifos (CPF) into its most active derivative, CPF-oxon. CPF-oxon inhibits CYP1A and other enzymes, including carboxylesterases (CEs) and acetylcholinesterase (AChE). We studied the effects of an in vivo exposure to crude oil water accommodated fraction (WAF) followed by an ex vivo exposure of liver tissue to CPF on the expression of Cyp1a, AhR and ARNT mRNA, CYP1A protein and on the activity of biomarker enzymes in the rainbow trout (Oncorhynchus mykiss). Juvenile rainbow trout were exposed to WAF (62 µg L-1 TPH) for 48 h. Then, liver was dissected out, sliced and exposed to 20 µg L-1 CPF ex vivo for 1 h. Liver tissue was analyzed for mRNA and protein expression and for CEs, AChE, glutathione S-transferase (GST) and CYP1A (EROD) activity. WAF induced Cyp1a mRNA and CYP1A protein expression by 10-fold and 2.5-8.3-fold, respectively, with no effect of CPF. WAF induced AhR expression significantly (4-fold) in control but not in CPF treated liver tissue. ARNT mRNA expression was significantly lowered (5-fold) by WAF. CPF significantly reduced liver EROD activity, independently of WAF pre-treatment. CEs activity was significantly inhibited in an additive manner following in vivo exposure to WAF (42%) and ex vivo exposure to CPF (19%). CPF exposure inhibited AChE activity (37%) and increased GST activity (42%).


Assuntos
Clorpirifos/toxicidade , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Oncorhynchus mykiss/fisiologia , Poluição por Petróleo/efeitos adversos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/química , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Aquicultura , Translocador Nuclear Receptor Aril Hidrocarboneto/antagonistas & inibidores , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Biomarcadores/metabolismo , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Clorpirifos/farmacologia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/toxicidade , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutationa Transferase/química , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Inseticidas/farmacologia , Fígado/enzimologia , Fígado/metabolismo , Resíduos de Praguicidas/farmacologia , Resíduos de Praguicidas/toxicidade , Poluentes Químicos da Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...